
The tool of thought for expert programming

Dyalog™ forWindows

Release Notes

Version: 13.1

Dyalog Limited
email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2012 by Dyalog Limited

All rights reserved.

Version: 13.1

Revision: 22185

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose. Dya-
log Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Introduction 1
New Documentation 1
Key Features 2

Extended Diagnostic Message: 3
System Requirements 16
Interoperability 17

Chapter 2:NewLanguage Features 21
File History: 21
Random Link: 23
RandomNumber Generator: 25
Extended Diagnostic Message: 26

Index 33

Chapter 1: Introduction 1

Chapter 1:

Introduction

New Documentation
Previously, Dyalog maintained all product documentation in various different for-
mats, including Microsoft Word and HTML, depending upon the target publication
media. The duplication of source material lead to inconsistencies in the different
forms of publication.

Dyalog has now invested in a single-source solution for the documentation and has
converted the bulk of the existing documentation to the new platform fromwhich the
Version 13.1 documentation has been produced.

The new platform will enable Dyalog to improve the quality of the documentation
and the range of formats in which it can be published. It will also allow the doc-
umentation to be more easily maintained and to be updated in a more timely fashion.

Due to the nature of the conversion process, there are currently a number of typo-
graphical errors, particularly formatting errors, which Dyalog is still working to cor-
rect. For this reason, the Version 13.1 manuals may not yet be ordered in perfect
bound printed form from Lulu.

Chapter 1: Introduction 2

Key Features
Dyalog APL Version 13.1 provides the following enhancements and changes:

Enhancements
l New system function ⎕FHIST
l New system constant ⎕DMX
l New Random Number Generators
l Performance Improvements

Other Changes
l New defaults for component file properties
l Large Component Support
l Compatibility checking
l PrintList property
l Miscellaneous

Chapter 1: Introduction 3

New System Function ⎕FHIST
The new File History system function provides information about certain file events.
This includes information about which user created the file and when, which user last
tied the file and when, and which user updated the file and when.

This feature has been added to support users migrating from the SHAREFILE/AP sys-
tem.

Extended Diagnostic Message: R←⎕DMX
Version 13.1 adds significant new error reporting functionality, in the form of a sys-
tem variable which has been named ⎕DMX. ⎕DMX is designed to make error handling
simpler, more complete and more accurate.

l More Information: ⎕DMX is a namespace with a number of properties,
which provide much more information about errors than did the old var-
iables (in version 13.1, only a few primitives and system functions take
advantage of this; full support will evolve over the next several releases).
Application code can also provide more error information, as ⎕SIGNAL has
been extended accordingly.

l Thread Safe: ⎕DMX is local to each APL thread: An error occurring in one
thread will not change the value of ⎕DMX in other threads. This is not the
case for ⎕DM and ⎕EN.

l Isolation of Handled Errors: ⎕DMX is local to the code which is invoked
to handle an error, in such a way that successfully handled (trapped) errors
will leave no trace of the handled event.

l Backwards compatibility: The behavior of the existing variables ⎕DM
(Diagnostic Message) and ⎕EN (Event Number) is unchanged. Dyalog rec-
ommends that applications which reference the old variables be modified to
use ⎕DMX, as soon as this is convenient

More Information
The default output following an error has been changed in Version 13.1, to display
most of this information. For example:

'c:\no\such\folder\output.txt' ⎕FCREATE 0
FILE NAME ERROR: Unable to create file ("The system cannot find
the path specified.")

'c:\no\such\folder\output.txt'⎕FCREATE 0
∧

Chapter 1: Introduction 4

In addition to the FILE NAME ERROR which would also have been displayed by
earlier versions, Version 13.1 displays the text Unable to create file, which
is a more detailed message originating in the file system, and in parentheses (The
system cannot find the file specified.), which is a message orig-
inating in the underlying operating system.

The menu itemOptions|Configure|Help / DMX (See User Guide) allows you to
decide whether this additional information should be displayed in the session (as
above), and/or in the status window. Note that ⎕DM is not affected by these settings;
it only contains the original APL error message as in previous releases:

↑⎕DM
FILE NAME ERROR

'c:\no\such\folder\output.txt'⎕FCREATE 0
∧

Thread safe copies of the values of ⎕EN and ⎕DM are available as the properties
⎕DMX.EN and ⎕DMX.DM.

A number of properties within the ⎕DMX space can be inspected, to extract the addi-
tional information. The detailed message is in a property called Message:

⎕DMX.Message
Unable to create file

The new messages also have “extended error numbers”, which are unique within
each category of errors:

⎕DMX.(ENX Category Vendor)
10 Component file system Dyalog

At present, Vendor will always contain the character vector 'Dyalog', but it is
envisaged that external components will eventually be able to make use of this mech-
anism. Finally, if the error was a direct result of a problem reported by the operating
system, the OSError property will be populated with this information:

⎕DMX.OSError
1 3 The system cannot find the path specified.

Currently the first item is either 0 or 1:

l 0 means that the error number is the value of errno(),
l 1 means that the error number is the result of GetLastError().

The second contains the error number and the third element is the corresponding text.

Chapter 1: Introduction 5

Finally, the InternalLocation property identifies the line of the interpreter
source code that issued the error, which may be useful for the Dyalog support team
when analyzing particularly tricky errors:

⎕DMX.InternalLocation
qfile1.c 3614

Thread Safe
The old system variables ⎕EN and ⎕DM have workspace scope, which means that
they are shared by all threads. This means that, if two (or more) threads encounter
errors in rapid succession, error handling code which references these variables might
pick up values which are unrelated to the error being handled. ⎕DMX, on the other
hand, has thread scope: Each thread has its own copy of the variable. As server appli-
cations become more common, it is rapidly becoming more important to write code
which is “thread safe”. Dyalog strongly recommends that all references to ⎕EN and
⎕DM in current application code be replaced by references to ⎕DMX.EN and
⎕DMX.DM, respectively.

Isolation of Handled Errors
In version 13.1, ⎕DMX cannot be explicitly localised in the header of a function. How-
ever, for all trapped errors, the interpreter creates an environment which effectively
makes the current instance of ⎕DMX local to, and available only for the duration of,
the trap-handling code.

In particular ⎕DMX is localised within:

l Any function which explicitly localises ⎕TRAP
l The :Case[List] or :Else clause of a :Trap control structure.
l The right hand side of a D-function Error-Guard.

This localisation uses the standard shadow/un-shadow mechanism, so that an exist-
ing value of ⎕DMX will be hidden on entry to the trap-handling code (or localisation
of ⎕TRAP) and restored afterwards. The benefit of the localization strategy is that
code which uses error trapping as a standard operating procedure (such as a file util-
ity which traps FILE NAME ERROR and creates missing files when required) will
not pollute the environment with irrelevant error information.

In particular, it becomes easier to implement tools to handle errors by logging them
or displaying additional information to end users, without worrying that trapped
errors within the tool code will interfere with current state of the application.

Chapter 1: Introduction 6

Examples
The effect of automatic localisation of ⎕DMX is illustrated by the following examples.
In each case, assume the existence of a "Global" value of ⎕DMX, whose EN field is 0,
following a)RESET.

Example[1] :Trap control structure:
⎕DMX.EN=0 ⍝ Global ⎕DMX visible here
:Trap 11 ⍝ Catch error 11

⎕DMX.EN=0 ⍝ Global ⎕DMX visible here
÷0 ⍝ Generate error 11

:Else ⍝ Error-handling code:
⎕DMX.EN=11 ⍝ Local ⎕DMX for ÷0 error visible here

:EndTrap ⍝ ⎕DMX unshadowed after Else-clause
⎕DMX.EN=0 ⍝ Global ⎕DMX visible here

Example[2] ⎕TRAP system variable:
∇ foo;⎕TRAP

[1] ⍝ ⎕DMX is shadowed and un-shadowed @ the same time as ⎕TRAP
[2] ⍝ The local value of ⎕DMX is initialised to a copy of the
[3] ⍝ calling function's value ("pass-through localisation").
[4] ⍝ This local value will be changed if an error occurs. On
[5] ⍝ exit from the function, the calling environment's value
[6] ⍝ will be restored (along with that of ⎕TRAP) as normal.
[7] ⎕DMX.EN=0 ⍝ passed-through from calling env
[8] ⎕TRAP←0 'c' '→next' ⍝ sets trap; does not change or
[9] ⍝ localise ⎕DMX
[10] ⎕DMX.EN=0 ⍝ passed-through from calling env
[11] ⍎'÷0' ⍝ updates local ⎕DMX; jumps to next:
[12] next: ⎕DMX.EN=11 ⍝ Error number has been set to 11
[13] ⎕TRAP←0 'c' '→end' ⍝ sets trap; does not change or
[14] ⍝ localise ⎕DMX
[15] ⎕DMX.EN=11 ⍝ Error number is 11, as before
[16] end: ⍝ on return, calling envt's ⎕DMX.EN
[17] ⍝ will be 0

∇

Example[3] Dfn Error-guard:
⎕←⎕DMX.EN=0 ⍝ Global ⎕DMX visible here
{

⎕←⎕DMX.EN=0 ⍝ Global ⎕DMX visible here
11 ⍝ trap DOMAIN

}⍬::{ ⍝ Error :: Guard
⎕←⎕DMX.EN=11 ⍝ Local ⎕DMX for ÷0 error visible here

}⍵
⎕←⎕DMX.EN=0 ⍝ Global ⎕DMX visible here
÷0 ⍝ Generate error 11

Chapter 1: Introduction 7

Example[4] Nested localisation of ⎕DMX
⎕DMX.EN=0 ⍝ Global ⎕DMX
:Trap 11 ⍝ Trap DOMAIN ERROR

:Trap 5 ⍝ Trap LENGTH ERROR
2 3+4 5 6 ⍝ Generate LENGTH ERROR

:Else ⍝ ⎕DMX localised for following clause:
⎕DMX.EN=5 ⍝ EN set to LENGTH in local ⎕DMX
÷0 ⍝ Generate DOMAIN ERROR

:End ⍝
:Else ⍝ ⎕DMX localised for following line

⎕DMX.EN=11 ⍝ EN set to DOMAIN in local ⎕DMX
:End ⍝ ⎕DMX un-shadowed here
⎕DMX.EN=0 ⍝ Global ⎕DMX restored.

Clarification
Whenever ⎕TRAP is localised explicitly, ⎕DMX will be localised at the same time.
This means only that any subsequent changes to ⎕DMX will be reverted as ⎕TRAP is
unshadowed. In particular, the assignment of ⎕TRAP has no effect on ⎕DMX; only its
localisation. Explicit localisation means the appearance in the header of a trad-fn or
as the argument of ⎕SHADOW. It does not include the implicit localisation, which
takes place at :Trap or dfn error-guard setting time. The examples above illustrate
these cases.

The timing of the setting of the values within the ⎕DMXmechanism is important:

1. When an error occurs, the values and properties needed to populate ⎕DMX
are collected

2. If a trap is in effect, the stack is cut back appropriately.
3. Within the error-handling code, ⎕DMX is populated with the values col-

lected in step 1.

This means that lexically and dynamically nested error handling code will behave
"as expected". See example[4] above.

Chapter 1: Introduction 8

New Random Number Generators
The Version 13.0 random number generator, that is used by Roll and Deal, is based
upon the Lehmer linear congruential generator. This has several limitations, most
notably that it has a limited value range of (2*31). Mindful of the need to support
applications that rely on the current mechanism, and the ability to generate specific
repeatable random series using ⎕RL, Dyalog has decided to provide two additional
random number generators in Version 13.1. Both the new algorithms support 64-bit
values and both may be considered to be an improvement (in terms of randomness)
over the current mechanism. The new mechanisms are:

Chapter 1: Introduction 9

l Mersenne Twister random number generator. This algorithm produces 64-bit
values with good distribution.

l Operating System random number generator. Under Windows APL this uses
the CryptGenRandom() function. Under Unix/Linux it uses
/dev/urandom[3].

You may select the random number generator in use using 16807⌶. This allows you
to switch dynamically between the different algorithms if required.

Performance Improvements
Empty-Line Processing
The interpreter now requires less time to process empty lines in functions, i.e. those
that contain only comments or have no content at all. Functions documented with a
block of leading comment lines, in particular, will benefit from this optimisation.

This improvement is also implemented in Version 13.0 from 3rd January 2012
onwards.

Dyadic Iota
The code for dyadic iota (Index Of) has been optimised, giving a small performance
improvement in most cases. This improvement is independent of the use of retained
hash tables, which delivers additional performance benefits as before.

This improvement is also implemented in Version 13.0 from 3rd January 2012
onwards.

New Idioms
Two new idioms have been added. These are:

0=⊃⍴ Is first dimension empty (⎕ML<2)

0≠⊃⍴ Is first dimension not empty (⎕ML<2)

Note that these idioms were also added to Version 13.0 from 22nd December 2011
onwards.

Take
The performance of an expression such as (N↑1) has been improved significantly in
Version 13.1 compared to previous versions.

Chapter 1: Introduction 10

New Defaults for File Properties
When you create a new component file, the default levels of checksum and jour-
naling are now both 1. These defaults may be changed using the APL_FCREATE_
PROPS_J and APL_FCREATE_PROPS_C parameters (see User Guide).

The new default will cause the creation of component files which are significantly
more robust in the face of network and other system failures, and often more repair-
able using ⎕FCHK. However, depending upon the way in which the application uses
component files, there may be a noticeable reduction in system performance. Dyalog
recommends the use of the new settings, however it is possible to configure the sys-
tem to use a different default if necessary.

Support for Larger Components
In Version 13.1, the maximum size of a component on a component file is 264 bytes.
Previously it was 232 bytes.

Note:All builds of Version 12.0, 12.1 and 13.0 created after 24th November 2010
will refuse to read components greater than 232 bytes in size. Builds prior to this date
will not handle large components correctly.

Compatibility Checking
The mechanism used to avoid backwards compatibilty issues has been improved.
Prior to this change, it would have been possible for an older version of Dyalog APL
to attempt to fix the ⎕OR of a function from a later version that contained a "new" sys-
tem function or idiom. This would typically cause a system error at that point, or
worse still, some time later in the application.

The new mechanism, which has been implemented in Version 13.1, prevents this hap-
pening by changing the internal format of a ⎕OR so that it is unrecognisable by older
Versions.

This means that henceforth if you attempt to access an incompatible ⎕OR the oper-
ation will fail with a DOMAIN ERROR, rather than potentially cause a system error.
(Note that builds of Version 12.1 dated before November 11th 2011 report FILE
COMPONENT DAMAGED instead of DOMAIN ERROR).

Change to PrintList
The mechanism used to generate the contents of the PrintList property has been
updated to better support network printers and the current versions ofWindows. The
new mechanism uses a different set ofWindows API calls. This means that in Version
13.1, the list is likely to include printers which were not included in previous ver-
sions and the names of the printers reported may be slightly different.

Chapter 1: Introduction 11

APL_CODE_E_MAGNITUDE Parameter
Version 13.0 introduced decimal floating point numbers which have greater pre-
cision than IEEE floating point numbers. This increased the maximum allowable
print precision from 17 to 34 and this had the side effect of changing the way
numbers in function bodies are descanned1. For example, the number one sextillion
(1021) in a function is descanned by Version 12.1 as 1E21 and by Version 13.0 as
1000000000000000000000.

Note that only numbers X in the range (10*17) ≤ X <(10*34) are affected.

Whilst this change has no other deleterious effect, it means that code that contains
such numbers is harder to read, and the result of ⎕CR (and other character rep-
resentations) of the same function may have changed between Version 12.1 and Ver-
sion 13.0 causing undesired affects in code management systems.

The APL_CODE_E_MAGNITUDE parameter allows the user to choose between
current (Version 13.0 and onwards) and earlier behaviour.

If the APL_CODE_E_MAGNITUDE parameter is undefined or set to 0 (the
default), numbers are descanned and displayed as normal.

IfAPL_CODE_E_MAGNITUDE is ¯1, numbers greater than or equal to 1017 will
be displayed using exponential format, as in Version 12.1.

The effect of setting this parameter to any other value is undefined.

1Descanning refers to the internal process used to convert the internal representation of APL code
into a character array. For numbers in function statements, this process uses the maximum value of
Print Precision.

Chapter 1: Introduction 12

Miscellaneous
Component Checksum Validation
There is a new function 3002⌶ which controls whether or not components read by
⎕FREAD are subject to checksum validation.

Core to APLCore
There is a new function 685⌶ that extracts an aplcore file from a UNIX core file.

Windows: Associating workspaces etc. with specific Version
UnderWindows, when Dyalog APL is installed, all Dyalog-specific files are asso-
ciated with that version. A new User Command,]EFA, has been included which
allows the user to select which of the versions of Dyalog APL installed on the PC
should be associated with Dyalog files. See the SALT-UCMD release notes for more
details.

GetAvailableWorkspace
This undocumented method of Root has been removed. It is superceded by 2000⌶.

Change to :Hold
If APL detects a deadlock situation, it now executes the :Else clause in preference
to generating an error.

COM Interface Changes
In Version 13.0 and earlier the Dyalog APL COM (OLE) interface converted incom-
ing values of type VT_CY (a 64 bit value, sometimes referred to as VT_CUR-
RENCY) to a two element vector containing the high 32 bits of the value and the
low 32 bits of the value.

As Version 13.1 supports the DECF element type the OLE interface now converts
incoming VT_CY values to DECFs, which means the value can be stored as a single
scalar numeric value.

In Version 13.0 and earlier, VT_DECIMAL types were converted to 8 byte floating
point values, which could have resulted in a loss of precision. Version 13.1 converts
VT_DECIMALS to DECFs, which will not result in a loss of precision.

Note that ⎕FR should be set appropriately if arithmetic is to be performed on the
resultant arrays.

Chapter 1: Introduction 13

Component Numbers
Previously, the component number passed as an argument to a component file func-
tion was not properly validated, and was simply rounded downto an integer. In Ver-
sion 13.1 the component number must be an integer, or the function will report
DOMAIN ERROR.

Enlist and Selective Assignment
Enlist (∊ with ⎕ML>0) may be used in selective assignment expressions.

Example:

⎕ml←1
names←'Andy' 'Karen' 'Liam'
(('a'=∊names)/∊names)←'*'
names

Andy K*ren Li*m

URL Strings
In Windows versions valid URLs are identified when in the session or in the
editor/tracer. When the mouse pointer is over a URL, the URL is underscored and the
following items appear in the context menu:

l Open link: this causes the URL to be opened in the default application
appropriate for the URL. Ctrl+Left Mouse performs the same operation

l Copy link to clipboard: this causes the URL to be copied to the clipboard

This feature can be enabled or disabled by selecting or unselecting the Underline
URLs and links checkbox on the General tab in the Configure box. This is saved as
the registry entry URLHighlight.

Issue 8146: (⍬⌷mat)←0 should not change the shape of mat
In Version 13.0

mat←2 3⍴⍳6
(⍬⌷mat)←0

resulted in

mat
0

⍴mat

This is incorrect. In Version 13.1 this had been corrected so that

Chapter 1: Introduction 14

mat
0 0 0
0 0 0

Chapter 1: Introduction 15

Dyalog Script Compiler
The default value of ⎕WX for the script compiler is now 3. If you require a different
value for ⎕WX you can specify it on the command line using the /wx option, or
assign it in your script. See the DotNet Interface Guide.

Change to path with ⎕USING and :Using
In previous versions if a .Net Assembly was referred to without a path, it would only
be loaded if it was located in the .Net installation directory. With 13.1 Dyalog
APL will first look in the directory in which the Dyalog program (or host appli-
cation) is located, and then the .Net installation directory.

Support for changing between .Net versions
Dyalog APL has improved support for changing between .Net versions; see the .Net
Framework Tab in the User Guide for more information.

Clipboard Format support
Dyalog APL now includes support (currently inbound only) for XMLSpreadSheet for-
mat.

2-digit years and yy_window
Dyalog APL now adheres to the 2-digit year rules which appear in the Windows
Region and Language settings. These can be overridden using the yy_window param-
eter.

Enhancement to ⎕MONITOR
⎕MONITOR has been enhanced so that it now correctly allocates time to diamondised
lines where the line start with :Case and similar constructs.

Chapter 1: Introduction 16

System Requirements
Microsoft Windows
Dyalog APL Version 13.1 supports all current versions ofWindows fromWindows
2000 up to and including Windows 7 and Windows Server 2008.

Dyalog APL Version 13.1 is not supported for versions ofWindows prior to Win-
dows 2000, such as Windows 95, Windows 98, Windows ME and Windows NT4.

Microsoft .Net Interface
Dyalog APL Version 13.1 .Net Interface requires Version 2.x or greater of the Micro-
soft .Net Framework. It does not operate with .Net Version 1.0.

Unix and Linux
For an up-to-date list of supported Unix and Linux platforms, please contact sup-
port@dyalog.com.

Chapter 1: Introduction 17

Interoperability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved fromDyalog Version 13.1 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. FromVersion 11.0, com-
ponent files and workspaces can generally be shared between Dyalog interpreters run-
ning on different platforms. However, this is not always possible, for example:

l Component files created by Version 10.1 can often not be shared across plat-
forms, even when used by later versions.

l Small-span (32-bit) component files become read-only when opened on a
different architecture from that on which they were created.

Note however that the system function ⎕FCOPY can be used to make a logically iden-
tical copy of an old file, which is fully inter-operable.

The following sections describe other limitations in inter-operability:

Code
Code which is saved in workspaces, or embedded within ⎕ORs stored in component
files, can generally only be read by the version which saved them and later versions
of the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a Version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕OR should not be used as a mechanism for sharing code or objects
between different versions of APL

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following par-
agraphs, Dyalog APL provides inter-operability for arrays which only contain
(nested) character and numeric data. Such arrays can be stored in component files - or
transmitted using TCPSocket objects and Conga connections, and shared between
all versions and across all platforms.

Chapter 1: Introduction 18

As mentioned in the introduction, full cross-platform interoperability of component
files is only available for large-span component files (see the following section), and
for small-span component files created by Version 11.0 or later.

32 vs. 64-bit Component Files
Large-span (64-bit-addressing) component files are inaccessible to versions of the
interpreter that pre-dated their introduction (versions earlier than 10.1).

The second item in the right argument of ⎕FCREATE determines the addressing type
of the file.

'small'⎕fcreate 1 32 ⍝ create small-span file.
'large'⎕fcreate 1 64 ⍝ create large-span file.

If the second item is missing, the file type defaults to 64-bit-addressing. In versions
prior to 12.0, the default was 32-bit-addressing.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would be
readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are implemented as small-span (32-bit-addressing) component
files, and subject to the same restrictions as these files. External variables are unlikely
to be developed further; Dyalog recommends that applications which use them
should switch to using mapped files or traditional component files. Please contact
Dyalog if you need further advice on this topic.

32 vs. 64-bit Interpreters
FromDyalog APL Version 11.0 onwards, there are two separate versions of programs
for 32-bit and 64-bit machine architectures (the 32-bit versions will also run on 64-
bit machines running 64-bit operating systems). There is complete inter-operability
between 32- and 64-bit interpreters, except that 32-bit interpreters are unable to work
with arrays or workspaces greater than 2GB in size.

Unicode vs. Classic Editions
FromVersion 12.0 onwards, a Unicode edition is available, which is able to work
with the entire Unicode character set. Classic editions (a term which includes ver-
sions prior to 12.0) are limited to the 256 characters defined in the atomic vector,
⎕AV).

Chapter 1: Introduction 19

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for small-
span (32-bit addressing) files, which may not contain Unicode data. For large-span
(64-bit addressing) component files, the Unicode property is on by default but can be
toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file which may not contain Unicode
data, character data is mapped using ⎕AVU, and can therefore be read without prob-
lems by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component (that is either a 32-bit file, or a 64-bit file when the Unicode property is
currently off) if the data being written contains characters which are not in ⎕AVU.

Likewise, a Classic edition (Version 12.0 or later) will issue a TRANSLATION
ERROR if it attempts to read a component containing Unicode data not in ⎕AVU from
a component file. Version 11.0 cannot read components containing Unicode data
and issues a NONCE ERROR.

A TRANSLATION ERROR will also be issued when a Classic edition)LOADs or
)COPYs a workspace containing Unicode data which cannot be mapped to ⎕AV
using the ⎕AVU in the recipient workspace.

TCPSocket objects have an APL property which corresponds to the Unicode prop-
erty of a file, if this is set to Classic (the default) the data in the socket will be
restricted to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

AVU changes
The implementation of the function Right in Version 13.0 led to the discovery that
⎕AVU incorrectly defined ⎕AV[59+⎕IO] as ¤ (⎕UCS 164) rather than ⊢ (Right
Tack, ⎕UCS 8866). This error has been corrected in the default ⎕AVU and in work-
space AVU.dws. If you are operating in a mixed Unicode/Classic environment, this
error will have caused earlier Classic editions to map ⎕AV[59+⎕IO] to the wrong
Unicode character (¤). This may cause TRANSLATION ERRORs when a Version
13.0 Classic system attempts to read the data, as it will not be able to represent ¤ in
the Atomic Vector.

DECFs and Complex numbers
Version 13.0 introduced two new data types; DECFs and Complex numbers.
Attempts to read components of these types in earlier interpreters will result in a
DOMAIN ERROR.

Chapter 1: Introduction 20

Very large array components
The maximum size (in bytes) of a component written by Version 12.1 and prior is
2GB. This is the size of the component as held on disk which may be different than
the size reported by ⎕SIZE. In Version 13.0 the maximum size of a component
written by a 64-bit interpreter is 4GB. FromVersion 13.1 onwards, the limit on the
size of arrays or components is so large that for most practical purposes, there is effec-
tively no limit.

An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL. An attempt to read such a component in 64-bit Versions 12.0 and 12.1
patched after 1st April 2011 will result in a NONCE ERROR; earlier patches generate
a FILE COMPONENT DAMAGED error.

File Journaling
Version 12.0 introduced File Journaling (level 1), and 12.1 added journaling levels 2
and 3 and checksumming. Versions earlier than 12.0 cannot tie files which have any
form of journaling or checksumming enabled. Version 12.0 cannot tie files with jour-
naling levels greater than 1, or checksumming enabled. Attempting to tie such files
will result in a FILE NAME ERROR. Files can be shared with earlier versions by
using ⎕FPROPS to amend the journaling and checksumming levels.

TCPSockets
TCPSockets used to communicate between differing versions of Dyalog APL are sub-
ject to similar limitations to those described above for component files. In particular
TCPSockets with 'Style' 'APL' will only be able to pass arrays that are sup-
ported by both versions.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture.
In other words, the APmust share the same word-width and byte-ordering as its inter-
preter process.

Session Files
Session (.dse) files may only be used on the platform on which they were created and
saved.

Chapter 2: New Language Features 21

Chapter 2:

New Language Features

File History: R←⎕FHIST Y

Access code 16384
Ymust be a simple integer vector of length 1 or 2 containing the file tie number and
an optional passnumber. If the passnumber is omitted it is assumed to be zero.

The result is a numeric matrix with shape (5 2) whose rows represent the most recent
occurrence of the following events.

1. File creation (see note)
2. (Undefined)
3. Last update of the access matrix
4. Last tie (See User Guide: APL_FHIST_TIE parameter)
5. Last update performed by ⎕FAPPEND, ⎕FCREATE, ⎕FDROP or

⎕FREPLACE

For each event, the first column contain the user number and the second a timestamp.
Like the timestamp reported by ⎕FRDCIthis is measured in 60ths of a second since
1st January 1970 (UTC).

Currently, the second row of the result (undefined) contains (0 0).

Chapter 2: New Language Features 22

Note: ⎕FHIST collects information only if journaling and/or checksum is in oper-
ation. If neither is in use, the collection of data for ⎕FHIST is disabled and its result
is entirely 0. If a file has both journaling and checksum disabled, and then either is
enabled, the collection of data for ⎕FHIST is enabled too. In this case, the infor-
mation in row 1 of ⎕FHIST relates to the most recent enabling ⎕FPROPS operation
rather than the original ⎕FCREATE.

In the examples that follow, the FHist function is used below to format the result of
⎕FHIST.

∇ r←FHist tn;cols;rows;fhist;fmt;ToTS;I2D
[1] rows←'Created' 'Undefined' 'Last ⎕FSTAC'
[2] rows,←'Last Tied' 'Last Updated'
[3] cols←'User' 'TimeStamp'
[4] fmt←'ZI4,2(⊂-⊃,ZI2),⊂ ⊃,ZI2,2(⊂:⊃,ZI2)'|
[5] I2D←{+2 ⎕NQ'.' 'IDNToDate'⍵}
[6] ToTS←{d t←1 1 0 0 0⊂⍉⌊0 24 60 60 60⊤⍵
[7] ↓fmt ⎕FMT(0 ¯1↓↑I2D¨25568+,d),0 ¯1↓t}
[8] fhist←⎕FHIST tn
[9] fhist[;2]←ToTS fhist[;2]
[10] fhist[;1]←⍕¨fhist[;1]
[11] r←((⊂''),rows),cols⍪fhist

∇

Examples
'c:\temp'⎕FCREATE 1 ⋄ FHist 1

User TimeStamp
Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Last Tied 0 2012-01-14 12:29:53
Last Updated 0 2012-01-14 12:29:53

(⍳10)⎕FAPPEND 1 ⋄ FHist 1
User TimeStamp

Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Last Tied 0 2012-01-14 12:29:53
Last Updated 0 2012-01-14 12:29:55

⎕FUNTIE 1

'c:\temp'⎕FCREATE 1 ⋄ FHist 1
User TimeStamp

Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Last Tied 0 2012-01-14 12:29:57
Last Updated 0 2012-01-14 12:29:55

Chapter 2: New Language Features 23

Random Link: ⎕RL

⎕RL establishes a base or seed for generating random numbers using Roll and Deal,
and returns the current state of such generation.

Three different random number generatators are provided, which are referred to here
as RNG0, RNG1 and RNG2. These are selected using (16807⌶). See "Random
Number Generator:" on page 25. ⎕RL is relevant only to RNG0 and RNG1 for which
repeatable pseudo-random series can be obtained by setting ⎕RL to a particular value
first.

Using RNG0 or RNG1, you can set ⎕RL to any integer in the range 1 to ¯1+2*31 or
¯1+2*63 respectively. The latter case requires ⎕FR to be 1287.

In a clear ws, ⎕RL is initialised to the value defined by the default_rl parameter
which itself defaults to 16807 if it is not defined.

Using RNG0, ⎕RL returns an integer which represents the seed for the next random
number in the sequence.

Using RNG1, the system internally retains a block of 312 64-bit numbers which are
used one by one to generate the results of roll and deal. When the first block of 312
have been used up, the system generates a second block. In this case, ⎕RL returns an
integer vector of 32-bit numbers of length 625 (the first is an index into the block of
312) which represents the internal state of the random number generator. This means
that, as with RNG0, you may save the value of ⎕RL in a variable and reassign it later.

Internally, APL maintains the current state separately for RNG0 and RNG1. When
you switch from one RandomNumber Generator to the other, the appropriate state is
loaded into ⎕RL.

Chapter 2: New Language Features 24

RNG2 does not permit access to the seed, so in this case ⎕RL is not relevant and is not
used by Roll and Deal. It will accept any value but will always return zilde.

Examples
16807⌶1 ⍝ Select RNG1

0
⎕RL←16807
10?10

4 1 6 5 2 9 7 10 3 8
5↑⎕RL

10 0 16807 1819658750 ¯355441828
X←?1000⍴1000
5↑⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

⎕RL←16807
10?10

4 1 6 5 2 9 7 10 3 8
Y←?1000⍴1000
X≡Y

1
5↑⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

16807⌶0 ⍝ Select RNG0
1

⎕RL
16807

?9 9 9
2 7 5

?9
7

⎕RL
984943658

⎕RL←16807
?9 9 9

2 7 5
?9

7
⎕RL

984943658

16807⌶1 ⍝ Select RNG1
0

5↑⎕RL
100 ¯465541037 ¯1790786136 ¯205462449 996695303

Chapter 2: New Language Features 25

Random Number Generator: R←16807⌶Y
Specifies the random number generator that is to be used by Roll and Deal.

Y is an integer that specifies which random number generator is to be enabled and
must be one of the numbers listed in the first column of the table below.

R is an integer that identifies the previous random number generator in use.

The 3 random number generators are as follows :

Id Algorithm

0 Lehmer linear congruential generator.

1 Mersenne Twister.

2 Operating System random number generator.

UnderWindows, the Operating System random number generator uses the
CryptGenRandom() function. Under Unix/Linux it uses /dev/urandom[3].

The default random number generator in a CLEAR WS is 0 (Lehmer linear con-
gruential). The default is likely to be changed to 1 (Mersenne Twister) in a future
release of Dyalog APL. In preparation for this change, avoid writing code which
assumes that ⎕RL will be a scalar integer.

The Lehmer linear congruential generator RNG0 was the only random number gen-
erator provided in versions of Dyalog APL prior to Version 13.1. The imple-
mentation of this algorithm has several limitations including limited value range
(2*31), short period and non-uniform distribution (some values may appear more
frequently than others). It is retained for backwards compatibility.

The Mersenne Twister algortithm RNG1 produces 64-bit values with good dis-
tribution.

The Operating System algorithm RNG2 does not support a user modifiable random
number seed, so when using this scheme, it is not possible to obtain a repeatable ran-
dom number series.

For further information, see "Random Link: " on page 23.

Chapter 2: New Language Features 26

Extended Diagnostic Message: R←⎕DMX

⎕DMX is a system object that provides information about the last reported APL error.
⎕DMX has thread scope, i.e. its value differs according to the thread from it is ref-
erenced. In a multi-threaded application therefore, each thread has its own value of
⎕DMX.

⎕DMX contains the following Properties (name class 2.6). Note that this list is likely
to change. Your code should not assume that this list will remain unchanged. You
should also not assume that the display form of ⎕DMX will remain unchanged.

Category
character
vector The category of the error

DM
nested
vector

Diagnostic message. This is the same as
⎕DM, but thread safe

EM
character
vector

Event message; this is the same as ⎕EM
⎕EN

EN integer Error number. This is the same as ⎕EN,
but thread safe

ENX integer Sub-error number

HelpURL
character
vector

URL of a web page that will provide help
for this error. Version 13.1 identifies and
has a handler for URLs starting with http:,
https:, mailto: and www. This list may be
extended in future

InternalLocation
nested
vector

Identifies the line of interpreter source
code (file name and line number) which
raised the error. This information may be
useful to Dyalog support when
investigating an issue

Message
character
vector Further information about the error

OSError
see
below

If applicable, identifies the error generated
by the Operating System

Vendor
character
vector

For system generated errors, Vendor will
always contain the character vector
'Dyalog'. This value can be set using
⎕SIGNAL

Chapter 2: New Language Features 27

OSError is a 3-element vector whose items are as follows:

1 integer

This indicates how the operating system error was
retrieved.
0 = by the C-library errno() function
1 = by the Windows GetLastError() function

2 integer Error code. The error number returned by the operating
system using errno() or GetLastError() as above

3
character
vector

The description of the error returned by the operating
system

Example
1÷0

DOMAIN ERROR
1÷0

∧
⎕DMX

EM DOMAIN ERROR
Message Divide by zero
HelpURL http://help.dyalog.com/dmx/13.1/General/1

⎕DMX.InternalLocation
arith_su.c 554

Isolation of Handled Errors
⎕DMX cannot be explicitly localised in the header of a function. However, for all
trapped errors, the interpreter creates an environment which effectively makes the cur-
rent instance of ⎕DMX local to, and available only for the duration of, the trap-han-
dling code.

With the exception of ⎕TRAP with Cutback, ⎕DMX is implicitly localised within:

l Any function which explicitly localises ⎕TRAP
l The :Case[List] or :Else clause of a :Trap control structure.
l The right hand side of a D-function Error-Guard.

Chapter 2: New Language Features 28

and is implicitly un-localised when:

l A function which has explicitly localised ⎕TRAP terminates (even if the
trap definition has been inherited from a function further up the stack).

l The :EndTrap of the current :Trap control structure is reached.
l A D-function Error-Guard exists.

During this time, if an error occurs then the localised ⎕DMX is updated to reflect the
values generated by the error.

The same is true for ⎕TRAP with Cutback, with the exception that if the cutback trap
event is triggered, the updated values for ⎕DMX are preserved until the function that
set the cutback trap terminates.

The benefit of the localisation strategy is that code which uses error trapping as a
standard operating procedure (such as a file utility which traps FILE NAME ERROR
and creates missing files when required) will not pollute the environment with irrel-
evant error information.

Example
∇ tie←NewFile name

[1] :Trap 22
[2] tie←name ⎕FCREATE 0
[3] :Else
[4] ⎕DMX
[5] tie←name ⎕FTIE 0
[6] name ⎕FERASE tie
[7] tie←name ⎕FCREATE 0
[8] :EndTrap
[9] ⎕FUNTIE tie

∇

⎕DMX is cleared by)RESET, .

)reset
⍴⎕FMT ⎕DMX

0 0

The first time we run NewFile 'pete', the file doesn't exist and the ⎕FCREATE
in NewFile[2] succeeds.

NewFile 'pete'
1

Chapter 2: New Language Features 29

If we run the function again, the ⎕FCREATE in NewFile[2]generates an error
which triggers the :Else clause of the :Trap. On entry to the :Else clause, the
values in ⎕DMX reflect the error generated by ⎕FCREATE. The file is then tied, erased
and recreated.

EM FILE NAME ERROR
Message File exists
HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/9
1

After exiting the :Trap control structure, the shadowed value of ⎕DMX is discarded,
revealing the orignal value that it shadowed.

⍴⎕FMT ⎕DMX
0 0

Example
The EraseFile function also uses a :Trap in order to ignore the situation when
the file doesn't exist.

∇ EraseFile name;tie
[1] :Trap 22
[2] tie←name ⎕FTIE 0
[3] name ⎕FERASE tie
[4] :Else
[5] ⎕DMX
[6] :EndTrap

∇

The first time we run the function, it succeeds in tieing and then erasing the file.

EraseFile 'pete'

The second time, the ⎕FTIE fails. On entry to the :Else clause, the values in ⎕DMX
reflect this error.

EraseFile 'pete'
EM FILE NAME ERROR
Message Unable to open file
OSError 1 2 The system cannot find the file specified.
HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/11

Chapter 2: New Language Features 30

Once again, the local value of ⎕DMX is discarded on exit from the :Trap, revealing
the shadowed value as before.

⍴⎕FMT ⎕DMX
0 0

Example
In this example only the error number (EN) propery of ⎕DMX is displayed in order to
simplify the output:

∇ foo n;⎕TRAP
[1] 'Start foo'⎕DMX.EN
[2] ⎕TRAP←(2 'E' '→err')(11 'C' '→err')
[3] goo n
[4] err:'End foo:'⎕DMX.EN

∇

∇ goo n;⎕TRAP
[1] ⎕TRAP←5 'E' '→err'
[2] ⍎n⊃'÷0' '1 2+1 2 3' '∘'
[3] err:'goo:'⎕DMX.EN

∇

In the first case a DOMAIN ERROR (11) is generated on goo[2]. This error is not
included in the definition of ⎕TRAP in goo, but rather the the Cutback ⎕TRAP def-
inition in foo. The error causes the stack to be cut back to foo, and then execution
branches to foo[4]. Thus ⎕DMX.EN in foo retains the value set when the error
occurred in goo.

foo 1
Start foo 0
End foo: 11

In the second case a LENGTH ERROR (5) is raised on goo[2]. This error is included
in the definition of ⎕TRAP in goo so the value ⎕DMX.EN while in goo is 5, but
when goo terminates and foo resumes execution the value of ⎕DMX.EN localised in
goo is lost.

foo 2
Start foo 0
goo: 5
End foo: 0

Chapter 2: New Language Features 31

In the third case a SYNTAX ERROR (2) is raised on goo[2]. Since the ⎕TRAP state-
ment is handled within goo (although the applicable ⎕TRAP is defined in foo), the
value ⎕DMX.EN while in goo is 2, but when goo terminates and foo resumes
execution the value of ⎕DMX.EN localised in goo is lost.

foo 3
Start foo 0
goo: 2
End foo: 0

Chapter 2: New Language Features 32

Index 33

Index

A

APL_CODE_E_MAGNITUDE 11

C

Component Checksum Validation 12
CoretoAPLCore 12

D

dmx 3, 26

E

extended diagnostic message 3, 26

F

file
history 21

file history 21

G

generating random numbers 23

I

Interoperability 17

K

Key Features 2

M

Mersenne Twister 9

R

random link 23

S

System Requirements 16

V

VT_CURRENCY 12
VT_CY 12
VT_DECIMAL 12

34 Dyalog APL/W Release Notes Version 13.1

	Chapter 1: Introduction
	New Documentation
	Key Features
	Extended Diagnostic Message:

	System Requirements
	Interoperability

	Chapter 2: New Language Features
	File History:
	Random Link:
	Random Number Generator:
	Extended Diagnostic Message:

	Index

